Fast Bayesian parameter estimation for stochastic logistic growth models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

متن کامل

Parameter estimation in stochastic rainfall-runoff models

A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all the parameters, including the noise terms. The parameter estimation method is a maximum likelihood...

متن کامل

Parameter estimation in stochastic grey-box models

An e2cient and 3exible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Itô stochastic di6erential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended Kalman 9lter and features maximum likelihood as well as maximum a posteriori estimation on multiple indepen...

متن کامل

A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are cont...

متن کامل

Fast Bayesian Matching Pursuit: Model Uncertainty and Parameter Estimation for Sparse Linear Models

A low-complexity recursive procedure is presented for model selection and minimum mean squared error (MMSE) estimation in linear regression. Emphasis is given to the case of a sparse parameter vector and fewer observations than unknown parameters. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both a set of high posterior probability models and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biosystems

سال: 2014

ISSN: 0303-2647

DOI: 10.1016/j.biosystems.2014.05.002